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Typical Scientific Code 
Development

• Choose physics modelling problem
• Determine equations
• Find approximate solvers
• Code/Revise FORTRAN
• Test FORTRAN
• Tune FORTRAN

} Iterate
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Software Tools
for Scientific Computing

• Text Editor
• Fortran Compiler
• Debugger

• That's it?
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What do we really want?
• A way to write a spec in a succinct notation
• Incremental conversion of spec into code
• Capture of rationale for each step
• Means to add implementation knowledge
• Means to revise spec and get revised code

These tools exist!
• Sinapse

• Financial differential equations → code                       www.scicomp.com
• DMS Software Reengineering Toolkit

• Arbitrary program transforms                          www.semanticdesigns.com
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Stepwise Semiautomatic Conversion of Specs to Code

Transforms
aka “Rules”
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Optimization transform
in DMS Rewrite Rule Language

Domain Name

(*Z)[a>>2] = (*Z)[a>>2]+1;
(*Z)[a>>2]++;

Domain Syntax

Rule Condition

Before:

After:

default base domain C;
rule use-auto-increment(v: lvalue):
         statement -> statement
   “\v = \v +1”
   rewrites to
   “\v++”
   if no_side_effects(v);



        © Semantic Designs, Inc.      7    2010/03

So what's hard about these tools?

• Defining notations  (differential equations, FORTRAN)

• Notation parsers (MATLAB, C++ front ends)

• Computing inferences (symbol properties, information flows)

•  Mappings (partial functions) from one notation to another

•  Capturing sequence of transformations

•  Replay of transformation sequences

Knowledge Capture

Limits what we can do now
•  But enables many useful software engineering tasks
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USAF B2 Bomber: Automated Legacy Migration

•Thousands of rules
•100% conversion
•Reused for F-16 migration
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• Problem: aging 16-bit 1750 microprocessors in B2 Bomber
– 350,000 lines of mission software in JOVIAL
– Desperately need more memory space and speed

• Application functionality enhancements pushing boundaries
– No deep institutional knowledge about code details

• Solution: DMS + Semantic Designs’ services
– 12 months to implement JOVIAL translator

• Uses DMS source-to-source transformation rules
– 100% automated translation (some minor input edits)
– Passes ground simulator for B2
– Staging for installation in aircraft now

   Automated JOVIAL to C Migration

1M
Transformations

Spec

Transforms
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default source domain Jovial;
default target domain C;
private rule refine_data_reference_dereference_NAME
                (n1:identifier@C,n2:identifier@C)
                   :data_reference->expression
  = "\n1\:NAME @ \n2\:NAME" -> "\n2->\n1".
private rule refine_for_loop_letter_2
               (lc:identifier@C,f1:expression@C,
                f2:expression@C,s:statement@C)
                     :statement->statement
  = "FOR \lc\:loop_control :
         \f1\:formula BY \f2\:formula; \s\:statement“
    ->
       "{ int \lc = (\f1);
          for(;;\lc += (\f2)) { \s } }“
        if is_letter_identifier(lc).

Refinement transforms
Jovial to C

Domain Name
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DMS Software Reengineering Toolkit
• Metaprogramming machinery

– Source code analysis + modification
• Enables variety of automated SE tasks
• Commercial applications

– Formatters, Hyperlinked Source Browsers
– IP protection by code obfuscation
– Documentation extraction
– Metrics
– Preprocessor conditional simplification
– Test Coverage and Profiling tools
– Clone Detection and removal
– DSL code generation: Factory Automation
– Migrations  (JOVIAL to C, C++ to C#) 
– Large-scale C++ component restructuring
– SIMD vector generation from data-parallel C++ code

• Research applications
– Generic Aspect-weaving (U. Alabama Birmingham)
– Code generation/quality checking for spacecraft (NASA/JPL)
– Architecture Extraction (SD)

DMS toolkit
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How DMS Works
Generalized Compiler Technology Specialized to Desired Task

Static Analysis

DMS

Source 
Codes
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Source Code
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Transform Format Enhancement
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C++
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Translation 
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Some (potential) applications
of DMS

for Scientific Computing
• Search Large Application Codes

• Static Analysis: Finding Duplicated Code

• Dynamic Analysis: Test Coverage

• Smart Differencing

• Minimizing re-testing

• Acquiring regression Tests

• SIMD Code Generation from C++

• Physical Units Checking



        © Semantic Designs, Inc.      14    2010/03

Searching Large Applications

• Some Scientific Codes are huge (1M SLOC, 1000 files)

• Programmers spend 50% of their time looking at code

• One problem: how to find anything?
• Solution:  Code Search Engine

• Fast find across large code bases: C, C++, Fortran

• Instant display of hits and matching source code
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Search: Where's the Subroutine?
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Search: Where’s the COMMON block?
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Static Code Quality Analysis:
Clone Detection

• Solution: Find copy/paste/edit duplicated code:
• Detect Exact and Near Miss hits

• “I fixed this code”  (are there other copies?)
• 20% clones  20% chance there is other code to fix!

• What does it cost to miss a (cloned) fix?

• Stolen abstractions → should be library routines

• Inconsistent parameters → buggy clones
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Clone Detection on Large Fortran Code
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A copy/paste/edit Clone
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The Clone Abstraction
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Code sure to cause a bug
→ wastes Scientist's time
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Dynamic Analysis:
Test Coverage for F90

• Have you done adequate testing?

• Passes “all my tests” isn't enough

• What about code not exercised?

• Solution:  Track executed code
• Display in UI

• Produce reports on coverage
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Test Coverage for F90 (Mockup)
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Reviewing code changes

• Use (classic line-oriented) Diff(?)
– Advantages: widely available, easily understood
– Disadvantages: 

• Line granuality: fine detail in statements hard to see
• Doesn’t understand code structure

– Programmers change constants, identifiers, expressions, statements, 
block

• Use Smart Differencer(!)
– Advantages:

• Detects changes in code structures
• Reports changes as “rename”, copy, delete, move, …
• Finer grain output  focused reviewing
• Faster reviews
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Diff vs. SmartDiff: misspelled Julian Dates
Diff output: 141 lines

! Conversions to and from Julienne dates and find day_of_the_week.
---> ! Conversions to and from Julian dates and find day_of_the_week.
19,20c19,20< !     julienne :: Integer, Optional
< !               If present the julienne day for which the weekday is
---> !     julian :: Integer, Optional
> !               If present the julian day for which the weekday is
31c31< !                            -1=invalid Julienne day
---> !                            -1=invalid Julian day
34c34<       subroutine day_of_week(julienne, weekday, day, ierr)
--->       subroutine day_of_week(julian, weekday, day, ierr)
37c37<       integer,intent(in),optional  :: julienne
--->       integer,intent(in),optional  :: julian
44,45c44,45<       if(present(julienne)) then   
<         if(julienne < 0) then
--->       if(present(julian)) then   
>         if(julian < 0) then
49c49<         iweekday = mod(julienne+1, 7)
--->         iweekday = mod(julian+1, 7)
51c51<         iweekday = date_to_julienne(ierr=ierr)
--->         iweekday = date_to_julian(ierr=ierr)
82c82< ! Convert a Julienne day to a day/month/year
---> ! Convert a Julian day to a day/month/year
85,86c85,86< !     julienne :: Integer
< !               The julienne day to convert
---> !     julian :: Integer
> !               The julian day to convert
100c100< !                            -1=invalid Julienne day
---> !                            -1=invalid Julian day
103c103<       subroutine 
julienne_to_date(julienne,day,month,year,values,ierr)

Another 100 lines…

Smartdiff output: 1 line
Rename 34.7-265.36 to 34.7-267.34 with 
'date_to_julienne'->'date_to_julian', 
'julienne_to_date'->'julian_to_date',
 and 'julienne'->'julian'
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After change, what to Unit retest?
• Modules X directly called  by Unit tests

– Sort of easy to detect with diff
• Fails badly on moved code
• Forces retest of modules with just renames

– Use SmartDiff
• Modules Y that call changed X

– Need global call graph
– Use C? Needs points-to analysis

• Modules Z called by changed Y
– after call to X … if Z uses result from X
– Need control flow and data flow analysis
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Modified

A Global Call Graph

Change this…

2. M
ust Retest this

3. M
ust Retest this
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Where to get Unit (Regression) Tests?

• Most development have very few (intentions don’t count!)
– Very hard to construct with large, running application

• Running code a possible source
– Instrument each function
– Collect argument/result values at runtime

• Must include all variables read by function
– Generate Unit tests for argument/result pairs
– Puppetize (modify) code to force enable Unit test execution

• Needs FORTRAN…
– Control/data flow analysis
–  Transformation to insert instrumentation/puppet code
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Compiling C++ for SMP/SIMD machines

• Problem
– Suddenly, SMPs with SIMD are cheap

• Variety of targets: PowerPC, Cell, X86, custom CPUs
– How to get high performance C++ applications running there?

• Solution: Vector C++
– New vector datatype     V[ i:j ; m:n ; x:y ]

• Arbitrary dimension array of arbitrary subtype
• Breaks C++ storage layout rules → enables communication optimizations

– Data layout specifications
– Array slices and data parallel operation on (sub)arrays
– Partial order computations

• Where to get compiler?
– Use DMS + program transformations
– Translate VectorC++ to target-specific C++/SIMD operators
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SIMD: Prototype VC++
• Robust VectorCpp.h (raw vector implementation as templates)

– Can enable “Out of range” errors on subscripts (via C++ asserts)
• Dynamic vectors now usable

– Initial sizing, access/update, parameter passing
• Simple casts between arrays and vectors
• RHS Vector Slicing; some LHS vector slicing
• Elementwise built-in operators on vectors: + - * / < > =
• Elementwise user-defined operations on vectors (a.k.a. lifted functions)
• Dot product {.} and Matrix Multiply {+@*} implemented
• forceinline works for non-lifted functions (but not for methods)
• Reduction of many VC++ operators to forall loops containing nested ifs

– Feeds into VMX vectorization with slices in inner forall loops
• Fusing of some forall loops (current implementation: not always safe)

– Fused loop bodies provide better vectorization opportunities

• Compiles to Vanilla C++
• Compiles to C++ with PowerPC VMX SIMD
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Note p has been lifted 
out of forall loop and 
vectorized so that loop 
can be implemented 
with vector instructions

Note scalar 
inside loop; 
can’t vectorize 
like this

SIMD: Example Translation to Vanilla C++

int main () {
    int x[3:7];
    int y[3:7];
    forall (int z=4:6)
        { int p;
          p= x[z]+1;
          x[z]=p*2;
        }
    forall (int z=4:6) 
      y[z]=0;
}

VC++ C++ translation

Note two forall loops 
fused, will enable 
better vector machine 
code generation

#include "VectorCpp.h"
int main()
  {
    VectorCpp::Vector<int, …<…, 3, 7> > x;
    VectorCpp::Vector<int, …<…, 3, 7> > y;
    {
      VectorCpp::Vector<int, …<…, 4, 6> > p;
      {
        for (int z = 4; z < 6; z++)
          {
            {
              p[z] = x[z] + 1;
              x[z] = p[z] * 2;
            }
            y[z] = 0;
          }
      }
    }
  }
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int main () {
    int j=2; int m[0:10];
    float x[0:10],y[0:10];
    forall(int q=0:10)
      {  x[q]=x[q]+.3f*y[j];
         if (y[q]!=3.f & x[q]>1.f )

 { if (m[q]==3)
     x[q]=0.0;
 }

       }
    }

const float L15[4] = {.3e0f,.3e0f,.3e0f,.3e0f};
#include "VectorCpp.h"
int main() {
  int j = 2; VectorCpp::Vector<int, …, 0, 10> > m;
  VectorCpp::…float…0, 10> > x; VectorCpp::…float…0, 10> > y;
  { int lt11 = 0; int ut12 = 10; // preloop: handle fractional vector
    for (int q=lt11; q<(lt11%4 … ); q++)
      { x[q] = x[q] + .3f * y[j];
        if (y[q] != 3.f & x[q] > 1.)

if (m[q] == 3)
  x[q] = 0.0; }

    for (int q=lt11%4==0?lt11:lt11+4-lt11%4; q<ut12-ut12%4;
             q += 4)
     { __stvx(__vmaddfp(__lvx(&L15,0),
               __vspltw(__lvlx(&y[j],0),0),
               __lvx(&x[q],0)),&x[q],0);
       { _vector4 t13 = __vand(__vcmpequwR(
             __vcmpequw(__lvx(&y[q],0),__vcfux(__vspltisw(3),0)),
                                            __vspltisw(0), 1),
                __vcmpgtfpR(__lvx(&x[q],0),
                            __vcfux(__vspltisw(1),0),1)));
         if (XMComparisonAnyTrue(1))

{  vector4 t14 = __vcmpequwR(__lvx(&m[q],0),
                                         __vspltisw(3), 1);
               t14 = __vcmpequwR(t13,__vand(t14, t13), 1);

    if (XMComparisonAnyTrue(1))
                   __stvx(__vsel(__lvx(&x[q],0),
                                 __vspltisw(0),t14),&x[q],0);

}}}
      // postloop
      for (int q = ut12 - ut12 % 4; q < ut12; q++)

{ … } } }

Pre and post loops 
handle fractional vectors

SIMD: Example Translation to SIMD Vectors
VC++ C++ translation (edited)

Note multiply-and-
accumulate optimizatons

Note conditional update 
of x[q] based on  nested 
conditionals in loop
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Physical Units Checking
Does your computation make sense?

• Problem: easy to get units wrong in formula
        SNOW_FEET = SNOW_MASS / 12.0

– Formula complexity, abbreviated names contribute
              SNOW_DEPTH = SNM / 12.0

• Solution: Automate Units Checking
– Annotate code with units

• No change in performance

– Tool checks for sensible usage
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Physical Units Checking

REAL PRECIP_RATE ! u_gram/u_second
REAL DURATION  ! u_hour
REAL SNOW_DEPTH ! u_inches
… 

SNOW_MASS = PRECIP_RATE * DURATION * 
      &          ( 60*60 * u_second / u_hour)
…
SNOW_DEPTH = SNOW_MASS / (12.0 * u_inches/ u_foot)

Detected error

Programmer annotations

Implied units

Programmer annotations
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Other Possible Tools
• Code Refactoring
• Code optimization for parallel machines
• Holy Grail: Differential equations → code
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Conclusion

• Big codes are hard to build
• Many tools can improve development
• General mass analysis/change tools

     make it practical to get  many tools
• DMS is one of these engines
• SD already has a number of useful tools
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DMS Toolkit Components
• Parser/PrettyPrinter

– Multimode lexing and GLR parsing
– Automatic AST construction from 

grammar
– Preprocessor parsing, comment retention

• Existing front ends 
– C, C++, C#, Java, Pascal, Visual Basic
– COBOL, JCL, FORTRAN, Ada
– HTML, XML, CORBA IDL
– Verilog, VHDL

• Procedural API to ASTs
– Traditional compiler API

• Analysis support
– Parallel attribute evaluator over AST
– General symbol table manager
– Control flow graph construction
– Data flow analysis framework
– Points-to analysis framework

• RSL: Transformation Rule Language
• Patterns in DSL syntax
• Patterns, rewrites, rewrite rule sets

• Term rewriting engine
• Associative/Commutative rewrites
• Constant folding on basic types

• PARLANSE: DMS Procedural
           Programming Language

• Custom analyzers/transforms
• SMP Parallelism
• Robust exception handling
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